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Abstract

Text-based image captioning (TextCap) which aims to
read and reason images with texts is crucial for a machine
to understand a detailed and complex scene environment,
considering that texts are omnipresent in daily life. This
task, however, is very challenging because an image often
contains complex texts and visual information that is hard
to be described comprehensively. Existing methods attempt
to extend the traditional image captioning methods to solve
this task, which focus on describing the overall scene of im-
ages by one global caption. This is infeasible because the
complex text and visual information cannot be described
well within one caption. To resolve this difficulty, we seek
to generate multiple captions that accurately describe dif-
ferent parts of an image in detail. To achieve this purpose,
there are three key challenges: 1) it is hard to decide which
parts of the texts of images to copy or paraphrase; 2) it
is non-trivial to capture the complex relationship between
diverse texts in an image; 3) how to generate multiple cap-
tions with diverse content is still an open problem. To con-
quer these, we propose a novel Anchor-Captioner method.
Specifically, we first find the important tokens which are
supposed to be paid more attention to and consider them
as anchors. Then, for each chosen anchor, we group its rel-
evant texts to construct the corresponding anchor-centred
graph (ACG). Last, based on different ACGs, we conduct
the multi-view caption generation to improve the content
diversity of generated captions. Experimental results show
that our method not only achieves SOTA performance but
also generates diverse captions to describe images.

1. Introduction
The texts are omnipresent in our daily life and play an

important role in helping humans or intelligent robots to

*Authors contributed equally.
†Corresponding author

(1) Logitech keyboard in 
front of Dell monitor

(2) A red cup with Coca-

Cola on the table

(3) The price is 17.88, which 

turned out to be 19.88

(4) The time displayed on 
the computer is 10:48:32
(5) The player 35 is shooting 

Existing methods
The number displayed on 

the Dell monitor is 10:48:32

group

ACGs

cap.

Figure 1. Comparison with existing methods. For a given image,
existing methods tend to generate only one global caption. Un-
like them, we first select and group texts to anchor-centred graphs
(ACGs), and then decide which parts of the texts to copy or para-
phrase. Our method is able to achieve higher accuracy and gener-
ate diverse captions to describe the image from different views.

understand the physical world [13]. In the image cap-
tioning area, the texts contained in images are also of
critical importance and often provide valuable informa-
tion [5, 19, 20, 34, 41] for caption generation. In this sense,
Sidorov et al. [40] propose a fine-grained image caption-
ing task, i.e., text-based image captioning (TextCap), aim-
ing to generate image captions that not only ‘describe’ vi-
sual contents but also ‘read’ the texts in images, such as
billboards, road signs, commodity prices and etc. This task
is very practical since the fine-grained image captions with
rich text information can aid visually impaired people to
comprehensively understand their surroundings [13]

Some preliminary tries for the TextCap task seek to di-
rectly extend existing image captioning methods [2, 19, 21]
to this new setting. However, such methods usually tend to
describe prominent visual objects or overall scenes with-
out considering the texts in images. Recently, M4C-
Captioner [40] tries to use additional OCR tools [4, 6, 31]
to recognise texts in images. It is still hard to well describe
the complex text and visual information within one caption.
To resolve this difficulty, we propose to generate multiple
diverse captions focusing on describing different parts of an
image. However, there are still some challenges.

First, it is hard to decide which parts of the texts are most



crucial for describing the images. As shown in Figure 1, an
image often contains a lot of texts, but only a small part of
the texts play a key role in caption generation. For example,
a PC keyboard contains many letters, but we do not need a
caption that covers all the recognised letters.

Second, it is non-trivial to capture the complex relation-
ship between diverse texts in an image. The correct under-
standing of such a relationship is essential for generating
accurate captions. For example, to accurately describe a
cup, we might use its brand and capacity. But these texts
have no relevance to the contents on the computer screen.

More critically, how to generate multiple captions de-
scribing different contents remains unknown. Current im-
age captioning methods [2, 19, 21] often only generate a
content-monotone caption. They tend to focus on a small
part of the contents in the image, such as the time in the
monitor in Figure 1. To comprehensively describe an im-
age, one better solution is to generate diverse captions,
where each caption focuses on describing one relevant part.

To address the above issues, we design a new Anchor-
Captioner architecture that mainly consists of two key mod-
ules, i.e., an anchor proposal module (AnPM) and an an-
chor captioning module (AnCM). Specifically, AnPM is
proposed to understand the texts in an image and to cap-
ture the complex relationships between different texts. To
be specific, we first employ an anchor predictor to rank the
importance of each token. Then, we choose several im-
portant tokens to decide which parts of texts are most in-
formative and need to be carefully considered. After that,
considering each chosen token as an anchor, we use a re-
current neural network to model its complex relationships
with other tokens and to construct an anchor-centred graph
(ACG) for each anchor. Each ACG denotes a group of the
relevant tokens which are supposed to be included in the
same caption. Based on the different ACGs for an image,
we apply AnCM to generate diverse captions that cover var-
ious OCR tokens. To be specific, we first generate a visual-
specific caption to model global visual information. Then,
we take each ACG as guidance to refine the visual cap-
tion and generate multiple text-specific captions that con-
tain fine-grained text information. Extensive experimental
results on TextCaps dataset demonstrate the effectiveness of
our proposed method.

In summary, our main contributions are as follows:

1. We propose to exploit fine-grained texts information to
generate multiple captions that describe different parts
of images, instead of generating a single caption to
handle them as a whole.

2. We propose an anchor proposal module (AnPM) and
an anchor captioning module (AnCM) to select and
group texts to anchor-centred graphs (ACGs) and then
generate diverse captions based on ACGs.

3. We achieve the state-of-the-art results on TextCaps
dataset, in terms of both accuracy and diversity.

2. Related work
Image captioning aims to automatically generate textual
descriptions of an image, which is an important and com-
plex problem since it combines two major artificial intelli-
gence fields: natural language processing and computer vi-
sion. Most image captioning models [2, 15, 42, 44, 45, 49]
use CNNs to encode visual features and apply RNNs as lan-
guage decoder to generate descriptions. Some works [16,
25, 29, 48] propose to further refine the generated sentences
with multiple decoding passes. NBT [32] first generates
a template without specifics and then fills it with ‘object’
words. RL-based methods [18, 30, 35, 39] model the se-
quence generation as Markov Decision Process [47] and di-
rectly maximise the metric scores.

To generate diverse image captions, many works try to
control the generation in terms of style and contents. The
style controllable methods [14, 17, 33] usually require ad-
ditional annotations for training, such as a pair of labelled
captions with different styles. Other parallel works focus
on controlling the contents of the generated captions. John-
son et al. [22] are the first to propose the dense caption-
ing task to describe the visual objects in a sub-region [50].
Signal-based methods [7, 8, 9, 11] sample different predic-
tions based on the control signals to obtain diverse image
captions. Our work can be seen as text-based dense cap-
tioning and aims to generate multi-view captions.
Text-based image captioning aims to generate captions
describing both the visual objects and written texts. In-
tuitively, the text information is important for us to un-
derstand the image contents. However, the existing im-
age captioning datasets [24, 28] have a bias that only de-
scribes the salient visual objects in the image while ignor-
ing the text information. As a result, most image captioning
models [2, 15, 42, 44, 49] unable to ‘read’ the texts since
they don’t pay attention to improve such ability. In this
sense, Sidorov et al. [40] introduce a novel dataset, namely
TextCaps, which requires a captioning model not only to
‘watch’ visual contents but also ‘read’ the texts in images.
They introduce a benchmark M4C-Captioner [40], which is
simply extended from the M4C [19] (for TextVQA). Specif-
ically, they feed all the detected texts and visual contents
into their captioning model to generate a global caption for
an input image. However, it is difficult for a single caption
to cover all the multimodal information, and the overlooked
parts may be the information that people are interested in.

Different from existing methods, we propose an anchor
proposal module to understand the relationship within OCR
tokens and group them to construct anchor-centred graphs
(ACGs). With the help of ACGs, our method is able to bet-
ter describe the input image by generating diverse captions.
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Figure 2. An illustration of Anchor-Captioner. Given an input image, (1) we first extract text and visual features (T̂, V̂) independently.
Then, we fuse them to obtain multimodal features (T,V) via self-attention; (2) Following that, AnPM chooses a series of anchor-tokens
based on the anchor predictions and then groups the relevant tokens by constructing anchor-centred graphs (ACGs). (3) Lastly, AnCM
employs a visual-captioner to output a global visual-specific caption, and then uses a text-captioner to generate multiple text-specific
captions based on the above global caption and ACGs. In this figure, we only show the generated caption with the ACG of the top-1 score.

3. Proposed method
We study text-based image captioning (TextCap) which

aims to read and reason an image with texts to generate de-
tailed captions. This task is very challenging because it is
difficult to comprehensively describe images with rich in-
formation. Existing methods tend to generate one global
caption that tries to describe complex contents in an image.
However, such methods are unfeasible when the image con-
tains a large number of redundant visual objects and diverse
texts. To accurately describe an image, one better solution
is to generate multiple captions from different views. How-
ever, several challenges still exist. First, it is hard to decide
which parts of the texts of images to copy or paraphrase
when images contain a lot of texts. Second, it is non-trivial
to exploit the correct relationship between diverse texts in
an image, which, however, is essential to accurately de-
scribe the image. More critically, how to generate multiple
captions from different views for comprehensively describ-
ing images is still unknown.

In this paper, we propose a new captioning method
Anchor-Captioner that aims to accurately describe images
by using content diversity exploration. As shown in Fig-
ure 2, Anchor-Captioner has two main components, i.e., an
anchor proposal module (AnPM) and an anchor caption-
ing module (AnCM). AnPM chooses important texts as
anchors and constructs anchor-centred graphs (ACGs) to
model complex relationship between texts. AnCM takes
different ACGs as input to generate multiple captions that
describe different parts of an image. In this way, our method
is able to choose important relevant texts to describe and
also has the ability to generate diverse captions for compre-
hensively understanding images.

3.1. Multimodal embedding

To generate captions for an image, we first use a pre-
trained Faster RCNN [38] model to extractN visual objects
and recognise M OCR tokens by the Rosetta OCR [6].
Visual embedding. For the i-th visual object, the Faster

RCNN model outputs appearance feature va
i ∈ Rd and a

4-dimensional bounding box coordinate vb
i . To enrich the

visual representation, we apply a linear layer f1 with Layer-
Norm [3] to project the above features as v̂i = f1([va

i ,v
b
i ]),

where [·, ·] is a concatenation operation.
Token embedding. For each recognised OCR token, we
also use its appearance feature tai and bounding box coor-
dinate tbi . Apart from these features, following the M4C-
Captioner [40], we adopt two additional text features to fur-
ther enrich the representations, including FastText feature
tfi and PHOC (pyramidal histogram of characters) feature
tpi . In particular, tfi is a pretrained word-level embedding
for written texts while tpi is a character-level embedding for
capturing what characters are present in the tokens. Based
on the rich representations of OCR tokens, we calculate
OCR token features by t̂i = f2([tai , tbi , tfi , tpi ]), where
f2 is a linear layer with LayerNorm to ensure that token
embedding has the same scale as visual embedding.
Multimodal embedding fusion. Based on the above, we
obtain visual embedding V̂=[v̂1, ..., v̂N ]> and token em-
bedding T̂=[̂t1, ..., t̂M ]>. Since both the OCR tokens and
visual objects are visual contents and exist in images as
a whole, it is necessary to model their interaction. For-
mally, given V̂ and T̂, we use an L1-layer Transformer
module Ψ(·; θa) to obtain more informative features via a
self-attention operation as

V,T = Ψ ([V̂, T̂]; θa). (1)

3.2. Anchor proposal module

Based on the multimodal embeddings (V,T), existing
TextCap methods such as M4C-Captioner [40] simply treat
the texts in an image as another kind of visual information
and feed them to a captioning module without distinction.
However, compared with ambiguous visual information, the
texts in images are essential to describe images and thus
need to be considered carefully.

To this end, we propose the anchor proposal module
(AnPM) to determine which OCR tokens should be paid



more attention to describe. Inspired by the region pro-
posal network (RPN), AnPM first performs anchor predic-
tion among OCR tokens to output a score for each token
and choose a series of important tokens as anchors. Af-
ter that, to model the complex relationship between tokens,
AnPM groups relevant tokens to construct the correspond-
ing anchor-centred graph (ACG) for each anchor. Now, we
introduce how to construct ACGs in detail.
Anchor prediction. Intuitively, different OCR tokens play
different roles in caption generation. However, it is hard to
decide which texts should be paid more attention to. To this
end, based on the text features T, we apply a linear layer φ
as an anchor predictor to predict a score for each token as

sanchor = Softmax (φ(T)). (2)

In the anchor score sanchor∈RM , each element indicates
the importance weight of each OCR token. In training, we
adopt the OCR token with the highest score as the anchor
by argmax operation, denoted as

Tanchor = Ti,:, where i = argmax(sanchor). (3)

After that, we can obtain the anchor embedding Tanchor.
During the inference phase, we choose OCR tokens with
top-K scores as anchors.
Anchor-centred graph construction. In this paper, we
employ a RNN module and take Tanchor as the initial hid-
den state to model the potential dependence between the
anchor and different tokens. The ACG construction for the
anchor Tanchor can be formulated as:

Tgraph = RNN (T, Tanchor),

sgraph = σ(f3(Tgraph)),
(4)

where Tgraph ∈ RM×d denotes the updated token feature
and f3 is a linear layer followed by Sigmoid activation func-
tion σ to output the graph score sgraph ∈ RM for all M
tokens. After that, we concatenate Tanchor and its relevant
tokens to construct the ACG G as follows:

G =[Tanchor, {Ti
graph}], where (5)

sigraph > 0.5, ∀i ∈ [1,M ].

Overall, the anchor proposal module (AnPM) learns to
select an important OCR token as an anchor and then con-
struct an ACG for it. In this way, AnPM is able to propose a
series of ACGs for an input image, which would be fed into
the captioning module as guidance to generate diverse cap-
tions. Meanwhile, the generation process of each ACG is
independent and will not be affected by other pairs, which
greatly improves the quality of the generated captions.

3.3. Anchor captioning module

Compared with general image captioning, the TextCap
requires captioning models to not only describe visual ob-
jects but also contain OCR tokens in the generated captions.
To achieve this, we carefully design a progressive caption-
ing module, namely Anchor Captioning Module (AnCM).
Inspired by the Deliberation Network [48], as shown in
Figure 2, AnCM consists of a visual-captioner (denoted as
AnCMv) and a text-captioner (denoted as AnCMt). First,
the visual-captioner, a standard image captioning mod-
ule, uses the updated visual embedding V to generate a
visual-specific caption Y ′ with C words, denoted as Y ′ =
{y′c}Cc=1. Then, the text-captioner is proposed to refine the
generated caption based on the text information of ACG G
(see Eqn. (5)). Following the training of sequence gener-
ation task, the goal of AnCM is to maximise the data log
likelihood function as follows:

log

C∑
c=1

P (yc|AnCMt(y
′
c,G)) P (y′c|AnCMv(V)), (6)

where {yc} is the final generated caption. Since the pre-
dicted token y′c is obtained by argmax function which is
a non-differentiable operation, we cannot directly optimise
the above equation. To address this issue, we feed the hid-
den state feature hc outputted from AnCMv directly into
AnCMt and the training loss for AnCMt is computed as
follows:

Ltcap = −log

C∑
c=1

P (yc|AnCMt(hc,G); θt), where (7)

hc = AnCMv(V; θv).

The θv and θt are learnable parameters of visual-captioner
and text-captioner, respectively. In this way, we can train
AnCM in an end-to-end manner. Next, we will introduce
more details about the two captioners.
Visual-captioner (AnCMv). To capture long-range de-
pendency in sequence modelling, we employ an L2-layer
Transformer module (Ψ) as the backbone of the visual-
captioner. Specifically, the visual-captioner generates to-
kens in an auto-regressive manner as follows:

hc = Ψ(V,LM(y′c−1); θv),

y′c = argmax(f4(hc)),
(8)

where y′c−1 denotes the embedding of previous output to-
ken, f4(·) is a linear classifier for common vocabulary and
we can obtain the predicted token y′c with argmax opera-
tion. Here, we use the prefix language modelling (LM) tech-
nique [37] to ensure that the input entries only use previ-
ous predictions, and avoid peeping at subsequent generation
processes. Thus far, with the help of the visual-captioner,



we obtain a visual-specific caption {y′c} and its hidden state
feature {hc}Cc=1. Formally, we define the training loss for
AnCMv as Lvcap = −log

∑C
c=1 P (y′c).

Image captioning is a fairly mature sequence-generation
task, and researchers have also proposed many models
with promising performance. In this work, we do not fo-
cus on designing a new captioning module. Intuitively,
the backbone of visual-captioner can be easily replaced
by other image captioning models, such as BUTD [2] and
AoANet [21].
Text-captioner (AnCMt). Based on the hidden state fea-
tures {hc}Cc=1, the text-captioner aims to generate text-
specific captions that contain given OCR tokens. To this
end, at this stage, we use ACG as the guidance to refine
the caption generated by the visual-captioner from the last
step. Specifically, we use an L3-layer Transformer mod-
ule (Ψ) as the backbone of the text-captioner. Relying on
self-attention, the Transformer allows multimodal embed-
ding to freely interact with others, thereby achieving sat-
isfactory progress in sequence generation tasks. Formally,
given the hidden state and ACGs, our AnCMt can output
the joint embedding as follows:

Ĝ, ŷc = Ψ([G,hc,LM(yc−1)]; θt), (9)

where Ĝ is the updated token embedding in the ACG and ŷc

is the embedding of c-th prediction. Following M4C [19],
we adopt different classifiers for common vocabulary and
OCR candidate tokens as

yc = argmax([f4(ŷc), fdp(Ĝ, ŷc)]), (10)

where f4 is the shared classifier with visual-captioner in
Eqn. (8), fdp denotes the dynamic pointer network [19] that
makes prediction based on the Ĝ and ŷc. After concatenat-
ing two prediction scores, we use the argmax function on
the final prediction score to obtain the predicted token yc.

Compared with general captioning methods, the pro-
posed AnCM makes full use of a key character of the
TextCap task, that is, the OCR token can be used as an im-
portant guide to improve the generation accuracy.

3.4. Training details

Formally, we train our Anchor-Captioner model by opti-
mising the following loss function:

L = Lanchor(sanchor) + α Lgraph(sgraph) (11)
+ β Lvcap(Y ′) + η Ltcap(Y),

where the sanchor/graph is the output of AnPM (see
Eqn. (2) or (4)), the Y ′={y′c} and Y={yc} denote the gen-
erated visual-specific caption and text-specific caption (see
Eqns. (8) and (10)), respectively. {α, β, γ} are trade-off pa-
rameters. In practice, all the above four losses adopt the

binary cross-entropy loss function. We train AnPM with
Lanchor and Lgraph to find the most frequently described
ACGs. We train AnCM with Lvcap and Ltcap to generate
visual-specific and text-specific captions. Due to the page
limitation, we put detailed training and inference algorithms
in Supplementary A.
Ground-truth labels. Next, we will illustrate how to ob-
tain supervisions for training AnPM and AnCM. 1) Given
a manually annotated caption (e.g.,‘a man ... number 15 on
it’ in Figure 2), we consider it as ground truth (gt) for Ltcap

to train the text-captioner. 2) We then mask the OCR tokens
contained in the manually generated caption with [unk] to
build a new caption (e.g.,‘a man ... number [unk] on it’)
for Lvcap to train the visual-captioner. This is because we
do not require the AnCMv to make prediction among OCR
tokens by using only the visual information. 3) Consider-
ing that different people will describe the same image from
different views, the most frequently described token is of-
ten the most important one for describing an image. Thus,
we choose the most frequently described token as gt for
Lanchor to train the anchor prediction module in AnPM.
4) Given the chosen anchor, we consider the tokens that ap-
pear in the same caption as gt for Lgraph to train AnPM to
find the most relevant tokens for an anchor. During the test
phase, we do not need to construct gt-ACGs since they are
only used for calculating losses in the training. Note that
the gt-ACGs are automatically mined and constructed from
the same training split without using any additional annota-
tions, and thus comparisons with other methods are fair.

4. Experiments

We verify the effectiveness of our method on the
TextCaps [40] dataset. In the following, we first briefly in-
troduce the TextCaps and the comparison settings for it in
Sec. 4.1. More implementation details can be found in the
Sec. 4.2. And then, we compare our method with existing
captioning models in Sec. 4.3 and Sec. 4.4. Last, we demon-
strate our proposed method by providing some visualisation
results and analysis in Sec. 4.5.

4.1. Datasets and settings

Datasets. The TextCaps dataset [40] is collected from Open
Image V3 dataset and contains 142,040 captions on 28,408
images, which have been verified to contain text through
the Rosetta OCR system [6] and human annotators. For
each image, there are five independent captions. In the test
split, each image has an additional caption that is collected
to estimate human performance on the dataset. The dataset
also contains captions where OCR tokens are not presented
directly but are used to infer a description [40]. In this case,
the captioning models are required to perform challenging
reasoning rather than simply copy the OCR tokens. Most



# Method
TextCaps validation set metrics

B M R S C
1 BUTD 20.1 17.8 42.9 11.7 41.9
2 AoANet 20.4 18.9 42.9 13.2 42.7
3 M4C-Captioner 23.3 22.0 46.2 15.6 89.6
4 M4C-Captioner− 15.9 18 39.6 12.1 35.1
5 AnCMv 16.1 16.3 40.1 11.2 29.1
6 Ours 24.7 22.5 47.1 15.9 95.5

# Method
TextCaps test set metrics

B M R S C
7 BUTD 14.9 15.2 39.9 8.8 33.8
8 AoANet 15.9 16.6 40.4 10.5 34.6
9 M4C-Captioner 18.9 19.8 43.2 12.8 81.0

10 MMA-SR 19.8 20.6 44.0 13.2 88.0
11 Ours 20.7 20.7 44.6 13.4 87.4
12 Human 24.4 26.1 47.0 18.8 125.5

Table 1. Comparison with SOTA methods on the validation and
test set. In particular, rows 4 are captioning models without OCRs,
i.e., only use visual information to generate captions. The last row
is the estimated human performance, which can be seen as the
upper bound of captioning models on the TextCaps dataset.

captions contain two or more OCR tokens, and the average
length of captions is 12.4.
Evaluation metrics. We use five standard evaluation met-
rics in image captioning, including BLEU (B) [36], ME-
TEOR (M) [10], ROUGE L (R) [27], SPICE (S) [1] and
CIDEr (C) [43] to evaluate the accuracy. Following the
benchmark setting [40], we mainly focus on CIDEr, which
puts more weight on informative tokens and is more suit-
able for this dataset. To evaluate the diversity of generated
captions, we use Div-n [26] and SelfCIDEr [46] metrics on
the validation set. In particular, the Div-n focuses on token-
level diversity while the SelfCIDEr is used for semantic-
level diversity. In addition, we propose a new metric, called
Cover Ratio (CR), to measure the content diversity, that is,
how many OCR tokens are included in the generated cap-
tions. For notation convenience, we omit the percentage in
the metric scores.
Compared methods. We first compare our method with
two state-of-the-art (SOTA) image captioning methods,
i.e., BUTD [2] and AoANet [21]. For the TextCap task, we
compare our method with the current SOTA methods M4C-
Captioner [40] and MMR-SA [45]. For fair comparisons,
we use the same dataset annotation and multimodal feature
extraction methods (including the OCR system and Faster
RCNN) for all considered methods in our experiments. We
conduct extensive experiments on the validation and test set.
In particular, the evaluation results are provided by the test
server of the TextCaps-Challenge1. Since the number of
submissions of the results on the test set is limited, we con-
duct ablation studies on the validation set.

1TextCaps: https://textvqa.org/textcaps

# Method Div-1 Div-2 selfCIDEr CR
1 BUTD 27.0 36.4 45.3 -
2 M4C-Captioner 27.2 41.2 49.4 27.3
3 Ours 29.8 43.8 57.6 37.8
4 Human 62.1 87.0 90.9 19.3

Table 2. Diversity analysis. The BUTD and M4C-Captioner gen-
erate diverse captions via beam search (beam size is 5).

# Projection B M R S C A F1
1 Single 23.9 22.2 46.7 15.6 90.3 48.4 68.8
2 Multiple 23.7 22.4 46.3 16.0 90.7 49.0 68.9
3 Sequence 24.7 22.5 47.1 15.9 95.5 49.1 71.8

Table 3. Ablation studies of anchor proposal module (AnPM)
with independent projection (FC) and sequence projection (RNN).
Apart from using captioning metrics, we also use accuracy (A) and
F1 score to further measure the performance of AnPM.

4.2. Implementation details

In our implementation2, the feature dimension d is 768
and the f∗ is a linear layer with LayerNorm activation func-
tion to stabilise training. We train our model for 12,000
iterations with a batch size of 128. During training, we use
the Adamax optimiser [23] with a learning rate of 2e-4. We
adopt default parameter settings of BERT-BASE [12] for
the transformer module Ψ, such as 12 self-attention heads.
But the number of stacked layers are L1 = 2, L2 = L3 = 4,
respectively. For fair comparisons, following the TextCaps
benchmark [40], we use the same fixed common vocabu-
lary and the feature embeddings of visual objects and OCR
tokens. The number of visual objects is N = 100 and the
number of OCR tokens is M = 50. The maximum genera-
tion length is C = 30. The trade-off parameters of different
losses are set to α = β = γ = 1.

4.3. Main results

Overall results. As shown in Table 1, we first compare
our method with the current SOTA captioning models, in-
cluding BUTD, AoANet, and M4C-Captioner. From the
table, the BUTD and AoANet, standard image captioning
models, show poor performances on the validation set since
they fail to describe the texts in images. M4C-Captioner
reasons over multimodal information and outperforms stan-
dard image captioning models by a large margin. Compared
with M4C-Captioner, our model improves the CIDEr score
from 89.6 to 95.5 on the validation set and achieves 6 ab-
solute improvement on the test set. In particular, we also
report the result of visual-captioner AnCMv (row 5), which
can be seen as a degraded version of our model without
using OCR tokens. Same as M4C-Captioner w/o OCRs
(row 4), AnCMv is hard to generate reliable captions for
the TextCaps dataset. To address this issue, our model is
equipped with an additional text-captioner that refines gen-

2https://github.com/guanghuixu/AnchorCaptioner.

https://textvqa.org/textcaps
https://github.com/guanghuixu/AnchorCaptioner


# Anchor ACG B M R S C
1

Large
All 21.2 21.0 44.8 14.5 76.6

2 Around 21.4 21.1 44.9 14.4 77.4
3 Random 20.8 20.7 44.4 14.1 72.6
4

Centre
All 21.2 21.0 44.8 14.5 76.6

5 Around 21.5 21.2 45.0 14.4 78.0
6 Random 20.7 20.8 44.5 14.1 73.1
7

-
All 21.1 21.1 44.7 14.6 76.7

8 Random 20.4 20.6 44.1 13.9 70.2
9

GT
All 23.5 22.4 46.3 15.7 90.3

10 Around 22.1 21.9 45.6 15.2 83.9
11 Random 21.4 21.2 45.0 14.7 78.7
12 AnPM AnPM 24.7 22.5 47.1 15.9 95.5
13 GT GT 25.6 23.4 48.1 16.9 104.9

Table 4. Ablation studies of ACG construction using rule-based
approaches. For instance, row 2 (’Large’+’Around’) means that
we choose an OCR token with the largest region size as the anchor,
and then group the five closest tokens to construct its ACG. In
particular, we randomly group some tokens into an ACG, denoted
as ‘Random’ in the table. ‘GT’ denotes ground-truth and ’AnPM’
means using the prediction of AnPM.

erated captions with the text information. For fair compar-
isons, we choose the ACG with the highest anchor score to
refine the generated caption in this experiment, since exist-
ing methods derive only one caption for each input image.
In this way, our full model further boosts the CIDEr score
from 29.1 to 95.5 in the validation set.
Diversity analysis. To further evaluate the diversity of
the generated captions, we compare Anchor-Captioner with
BUTD and M4C-Captioner in terms of diversity metrics.
Since existing methods only generate a global description
for an image, we use the beam search technique for them
to produce diverse captions as baselines, where the beam
size is set to 5. For fair comparisons, in our method, we
also sample five ACGs for each image to generate captions.
As shown in Table 2, our method surpasses baselines in
terms of all considered metrics. Interestingly, the ground-
truth captions (by humans) have high selfCIDEr but with
low OCR cover ratio (CR). It means that humans may tend
to describe the salient image contents but ignore some OCR
tokens. Compared with human captioning, our method is
able to generate multiple captions with content diversity,
covering more OCR tokens. Note that, cover ratio (CR)
score for BUTD method is empty, because OCR tools are
not used in it.

4.4. Ablation studies

In this section, we further conduct ablation studies to
demonstrate the effectiveness of AnPM and AnCM.

For AnPM, we first compare three different kinds of
ACG construction strategies, i.e., independent projection
(FC), multiple projection (transformer module) and se-
quence projection (RNN module). As shown in Table 3, the
RNN outperforms FC in terms of all considered metrics,

# Method B M R S C
1 M4C-Captioner 23.3 22.0 46.2 15.6 89.6
2 M4C-Captioner† 24.1 22.6 46.7 15.7 93.8
3 M4C-Captioner∗ 24.4 22.6 46.9 15.8 99.6
4 AnCMv + AnCM†t 24.7 22.5 47.1 15.9 95.5
5 AnCMv + AnCM∗t 25.6 23.4 48.1 16.9 104.9

Table 5. Ablation studies of Anchor Caption Module (AnCM). †
denotes captioning modules using prediction ACGs provided by
AnPM, while ∗ denotes captioning modules using ground-truth.

especially improves the CIDEr score from 90.3 to 95.5. As
discussed in Sec. 3.2, the sequence projection is more rea-
sonable since it considers the history prediction. More de-
tails can be found in the supplement material. Moreover,
we also report the accuracy of anchor prediction and the F1
score of the predicted ACG. Note that, there is a trade-off
between obtaining high F1 score and diversity. To achieve
high accuracy and F1 score, AnPM tends to predict the most
frequently described ACG, which, however, could suffer
from low diversity of generated captions.

In addition to the above comparisons, we also compare
AnPM (RNN projection) with the rule-based ACG con-
struction and report the quantitative results in Table 4. To
be specific, we first adopt different rules to select token as
an anchor, including the largest token (rows 1-3), the cen-
tre token (rows 4-6), the ground-truth anchor (rows 9-11).
Then, we choose tokens to construct ACG using different
strategies (i.e., ‘All / Around / Random’). In particular, we
try to group tokens into a graph directly without performing
anchor selection process (in rows 7-8). From the table, all
the rule-based methods suffer low metric performance even
given the GT anchor to construct ACGs. The learning-based
method (AnPM) outperforms rule-based methods by a large
margin. One reason is that our AnPM considers the rich
semantic information of the tokens themselves and the vi-
sual information in images, while the rule-based approaches
mainly use shallow information such as size and location.

We also conduct ablation experiments for AnCM. From
the results in Table 5, we draw the following main obser-
vations. 1) As shown in rows 1-3, the M4C-Captioner†

and M4C-Captioner∗ that take the predicted ACGs and
ground-truth ACGs as inputs, outperform the original M4C-
Captioner by around 4 and 10 in terms of the CIDEr score,
respectively. These results well verify our idea, i.e., first
group OCR tokens into different ACG and then describe
each ACG with a specific caption. 2) Compared with M4C-
Captioner (row 1), our method improves CIDEr score from
89.6 to 95.5. 3) Equipped with AnPM, the M4C-Captioner†

(row 2) achieves better performance, which implies that our
AnPM can be easily extended to existing text-based reason-
ing methods. 4) Even for the same ACG inputs, our method
is still superior to M4C-Captioner† and M4C-Captioner∗,
which demonstrates the powerful captioning ability of our



M4C: a person is holding a green
laptop with a green screen that says
blobo
AnCMv: a person is holding a
compu-ter computer monitor
Ours-1: a person is holding a blobo
game on a computer screen
Ours-2: a blobo game is being held
in front of a computer screen
Ours-3: a computer screen shows a
game called blobo

M4C: a phone with the word lg on
the screen
AnCMv: a orange phone with a red
of a phone and a sign that says it
Ours-1: an orange lg phone with a
screen that says ' lg ' on it
Ours-2: an orange phone with the
word jazz on it
Ours-3: a phone screen shows a
time of 567 : 00 on it

M4C: a man stands at a podium at a
podium that says firefox
AnCMv: a man is standing a presenta-
tion on a screen that says
Ours-1: a man is giving a presentation
with a screen that says mozilla
Ours-2: a man is giving a presentation
with a screen that says " earn & keep "
Ours-3: a man is giving a presentation
with a screen that says " earn your
keep trust "

M4C: a poster for the mayan starts
and theatre
AnCMv: a poster for a <unk> <unk>
shows a man of a man in the top
Ours-1: a poster for mayan theatre at
the top of the page
Ours-2: a poster for mayan hill and
11th street
Ours-3: a poster for mayan and
theatre shows a picture of a man on
the bottom

Figure 3. Visualisation results on the TextCaps validation set. The prediction results of M4C-Captioner (M4C), visual-captioner (AnCMv)
and the proposed Anchor-Captioner are placed below the images in turn. The <unk> denotes ‘unkown’ token. For better visualisation,
the underlined word is copy from OCR tokens. In particular, Anchor-Captioner will refine the caption generated by AnCMv . The modified
tokens are viewed in red colour.

AnCM. 5) According to the last two rows, our AnCM suf-
fers a performance degradation with the predicted ACGs as
input, indicating that our method still has great potentials
for improving.

4.5. Visualisation analysis

To further demonstrate the effectiveness of our method,
we show some visualisation results on the TextCaps valida-
tion set. From Figure 3, our Anchor-Captioner is able to
refine the rough captions generated by the visual-captioner
(AnCMv). Specifically, for each input image, AnCMv first
uses visual information to generate a global caption, such as
‘a man’ and ‘a poster’. Similar to general image captioning
models, AnCMv is difficult to describe the texts in images.
As a result, we can see the visual-specific captions may
contain some <unk> tokens. It means that AnCMv can-
not use limited information to generate reasonable predic-
tions in this case. And then, Anchor-Captioner use anchor-
centred graphs (ACGs) to further refine the visual-specific
captions. Note that, the refine process is not only to re-
place the<unk> token, but also to revise the entire caption.
There are 66.39% of generated captions with <unk>, and
each caption has 1.24 <unk> on average. AnCMt modi-
fied 26.85% of words on the AnCMv’s output and improved
CIDEr score from 29.1 to 95.5 (see Tabel 1). We also
randomly sample different ACGs to demonstrate the diver-
sity of our generation. Compared with M4C-Captioner, our
method is able to generate fine-grained captions and cover
more OCR tokens. To further demonstrate the controllabil-
ity and diversity of our method, we provide more visualisa-
tion results in the supplement material.

5. Conclusion

In this paper, we have proposed an Anchor-Captioner to
resolve the TextCap task. To solve this task, existing meth-
ods tend to generate only one rough global caption which
contains one or two salient objects in the complex scene. In-
tuitively, such methods may ignore some regions that peo-
ple are really interested in. Unlike existing methods, we
seek to generate multiple captions from different views and
cover more valuable scene information. Specifically, we
first propose an anchor proposal module to group OCR to-
kens and construct anchor-centred graphs (ACGs) by mod-
elling the relationship between image contents. After that,
our anchor captioning module first generates a rough visual-
specific caption and then uses the above ACGs to further
refine it to multiple text-specific captions. In this way, our
method is able to generate diverse captions to cover more
information in images. Our method achieves state-of-the-
art performance on the TextCaps dataset and outperforms
the benchmark by 6 in terms of CIDEr score. Extensive
ablation experiments also verify the effectiveness of each
component of our method. Note that our anchor caption-
ing module has the potential to solve both image caption-
ing and text-based image captioning tasks simultaneously,
which we leave to our future study.
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